百度发布文心5.0全模态大模型,参数达2.4万亿,具备强大语言理解与生成能力。其采用全模态统一建模技术,可同时处理文本、图像、音频和视频,实现多类型数据的融合优化,标志着AI领域的重要进展。
阶跃星辰开源多模态视觉语言模型Step3-VL-10B,仅10B参数却在多项基准测试中表现卓越,解决了小模型智能水平不足的痛点。该模型在视觉感知、逻辑推理和数学竞赛等维度达到同规模最优,甚至超越规模大10至20倍的开源及闭源旗舰模型。
谷歌发布基于Gemma3架构的TranslateGemma翻译模型系列,提供4B、12B、27B三种参数规模,支持55种核心语言翻译,并具备多模态图像翻译能力,实现文本与图片文字的无缝翻译。
智谱联合华为开源图像生成模型GLM-Image,这是首个在国产芯片上完成全流程训练的SOTA多模态模型。其创新采用“自回归+扩散解码器”混合架构,实现了图像生成与语言模型的深度融合,在知识密集型任务中表现出色,能精准理解全局指令。
一款轻量级的多模态语言模型安卓应用。
高效的开源专家混合视觉语言模型,具备多模态推理能力。
Aya Vision 是 Cohere 推出的多语言多模态视觉模型,旨在提升多语言场景下的视觉和文本理解能力。
Migician 是一个专注于多图像定位的多模态大语言模型,能够实现自由形式的多图像精确定位。
Openai
$2.8
Input tokens/M
$11.2
Output tokens/M
1k
Context Length
Google
$0.49
$2.1
Xai
$1.4
$3.5
2k
$7.7
$30.8
200
-
Anthropic
$105
$525
$0.7
$7
$35
$17.5
$21
Alibaba
$4
$16
$1
$10
256
$2
$20
Baidu
128
$6
$24
pramjana
Qwen3-VL-4B-Instruct是阿里巴巴推出的40亿参数视觉语言模型,基于Qwen3架构开发,支持多模态理解和对话任务。该模型具备强大的图像理解和文本生成能力,能够处理复杂的视觉语言交互场景。
ExaltedSlayer
Gemma 3是谷歌推出的轻量级开源多模态模型,本版本为12B参数的指令调优量化感知训练模型,已转换为MLX框架的MXFP4格式,支持文本和图像输入并生成文本输出,具有128K上下文窗口和140+语言支持。
sbintuitions
Sarashina2.2-Vision-3B是由SB Intuitions训练的日本大型视觉语言模型,基于Sarashina2.2-3B-Instruct和SigLIP图像编码器构建,具备强大的图像到文本转换能力,支持日语和英语的多模态处理。
cyankiwi
ERNIE-4.5-VL-28B-A3B-Thinking AWQ - INT8是基于百度ERNIE-4.5架构的多模态大语言模型,通过AWQ量化技术实现8位精度,在保持高性能的同时大幅降低内存需求。该模型在视觉推理、STEM问题解决、图像分析等方面表现出色,具备强大的多模态理解和推理能力。
NyxKrage
Moondream 3 Preview HF是基于HuggingFace Transformers架构规范对Moondream 3 (Preview)模型的重新实现,使其能够与Hugging Face生态系统完全兼容。这是一个多模态视觉语言模型,采用专家混合(MoE)文本主干,约90亿参数,20亿活跃参数。
HIT-TMG
Uni-MoE 2.0-Omni 是荔枝科技(Lychee)推出的完全开源全模态模型,采用全模态 3D RoPE 和动态容量专家混合架构,显著提升了以语言为中心的多模态理解、推理和生成能力。该版本集成了全模态理解以及音频和图像生成能力。
DavidAU
这是一个增强版的多模态视觉语言模型,基于Qwen3-VL-8B-Thinking模型,通过Brainstorm 20x技术扩展至12B参数,采用NEO Imatrix增强的GGUF量化。模型具备强大的图像理解、文本生成和多模态推理能力,在视觉感知、文本质量和创意场景方面都有显著提升。
ggml-org
这是一个基于Qwen3-VL-30B-A3B-Instruct模型转换的GGUF格式版本,专门为llama.cpp优化。该模型是一个300亿参数的多模态视觉语言模型,支持图像理解和文本生成任务。
lmstudio-community
Qwen3-VL-2B-Thinking是由Qwen推出的视觉语言模型,基于2B参数规模,使用MLX进行8位量化,专门针对Apple Silicon芯片进行了优化。该模型支持图像和文本的多模态理解与生成任务。
BAAI
Emu3.5是北京智源人工智能研究院开发的原生多模态模型,能够跨视觉和语言联合预测下一状态,实现连贯的世界建模和生成。通过端到端预训练和大规模强化学习后训练,在多模态任务中展现出卓越性能。
Emu3.5是由北京智源人工智能研究院(BAAI)开发的原生多模态模型,能够跨视觉和语言联合预测下一状态,实现连贯的世界建模与生成,在多模态任务中表现卓越。
Qwen
Qwen3-VL-2B-Thinking是Qwen系列中最强大的视觉语言模型之一,采用GGUF格式权重,支持在CPU、NVIDIA GPU、Apple Silicon等设备上进行高效推理。该模型具备出色的多模态理解和推理能力,特别增强了视觉感知、空间理解和智能体交互功能。
Qwen3-VL-8B-Thinking是通义千问系列中最强大的视觉语言模型,具备增强推理能力的8B参数版本。该模型在文本理解、视觉感知、空间理解、长上下文处理等方面全面升级,支持多模态推理和智能体交互。
Qwen3-VL-4B-Instruct是通义系列最强大的视觉语言模型之一,在文本理解、视觉感知、空间理解、视频处理等方面全面升级,支持在多种硬件设备上运行,具备卓越的多模态推理能力。
Qwen3-VL-2B-Instruct-GGUF是通义千问系列的多模态视觉语言模型的GGUF量化版本,具备20亿参数,支持图像理解和文本生成的无缝融合,可在CPU、GPU等设备上高效运行。
unsloth
Qwen3-VL是迄今为止Qwen系列中最强大的视觉语言模型,在文本理解与生成、视觉感知与推理、上下文长度、空间和视频动态理解以及智能体交互能力等方面都进行了全面升级。该模型采用混合专家(MoE)架构,提供卓越的多模态处理能力。
Qwen3-VL是阿里巴巴推出的最新一代视觉语言模型,在文本理解、视觉感知、空间理解、视频分析和智能体交互等方面均有显著提升。该模型支持多模态输入,具备强大的推理能力和长上下文处理能力。
microsoft
Fara-7B是微软研究院开发的专为计算机使用场景设计的小型语言模型,仅有70亿参数,在同规模模型中实现卓越性能,能够执行网页自动化、多模态理解等计算机交互任务。
bartowski
这是Qwen3-VL-2B-Thinking模型的Llamacpp imatrix量化版本,提供了多种量化类型的文件,可在不同硬件环境下高效运行。该模型是一个2B参数的多模态视觉语言模型,具备思维链推理能力。
这是Qwen3-VL-2B-Instruct模型的量化版本,使用llama.cpp工具和imatrix方法生成了多种量化级别的模型文件,便于在不同硬件环境下高效运行。该模型是一个2B参数的多模态视觉语言模型,支持图像和文本的交互。
Ollama MCP Server是一个连接Ollama本地大语言模型和模型上下文协议(MCP)的桥梁工具,提供完整的API集成、模型管理和执行功能,支持OpenAI兼容的聊天接口和视觉多模态模型。
ToolChat是一个通过MCP服务器与大型语言模型(LLM)交互的工具,支持配置多工具服务器并调用特定功能,还能处理多模态输入如图片和文档。