以前的训练方法是错的?用REPA训练效率提升17.5倍
扩散模型(Diffusion Model)作为AI绘画领域的"顶流"技术,一直以其卓越的生成效果备受瞩目。然而,其漫长的训练过程一直是制约其进一步发展的瓶颈。近日,一项名为REPA(REPresentation Alignment)的创新技术为解决这一问题带来了突破性进展,有望将扩散模型的训练效率提升17.5倍。扩散模型的核心原理是通过逐步向图像添加噪声,然后训练模型反向还原出清晰图像的过程。这种方法虽然效果显著,但训练过程耗时耗力,往往需要数百万步的迭代才能达到理想效果。研究人员发现,这一问题的