Gaussian-Mixture-VAE
Public[Pytorch] Minimal implementation of a Variational Autoencoder (VAE) with Categorical Latent variables inspired from "Categorical Reparameterization with Gumbel-Softmax".
Comprehensive AI Models Collection for All Your Development & Research Needs
AI LLM Power Rankings - Performance, Buzz & Trends
Discover Trusted AI Model Partners - Guaranteed Reliable Support
Submit Your Model Info & Services - Precision Marketing & User Targeting
Discover Popular AI-MCP Services - Find Your Perfect Match Instantly
Easy MCP Client Integration - Access Powerful AI Capabilities
Master MCP Usage - From Beginner to Expert
Top MCP Service Performance Rankings - Find Your Best Choice
Publish & Promote Your MCP Services
Large-scale datasets and benchmarks for training, evaluating, and testing models to measure
Comprehensive Text Extraction and Document Processing Solutions for Users
[Pytorch] Minimal implementation of a Variational Autoencoder (VAE) with Categorical Latent variables inspired from "Categorical Reparameterization with Gumbel-Softmax".