Chai-1是一个用于药物发现的多模态基础模型,能够预测蛋白质、小分子、DNA、RNA、共价修饰等的分子结构。它在PoseBusters基准测试中达到了77%的成功率,与AlphaFold3相当。Chai-1无需多序列比对即可运行,保持了大部分性能,并且能够更准确地折叠多聚体结构。此外,Chai-1可以与实验室数据结合,提高预测性能。该模型旨在将生物学从科学转变为工程,推动AI在生物学研究中的应用。